Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization
نویسندگان
چکیده
We have presented a mechanism to explain why the resulting oxide morphology becomes a porous or a tubular nanostructure when a zircaloy is electrochemically anodized. A porous zirconium oxide nanostructure is always formed at an initial anodization stage, but the degree of interpore dissolution determines whether the final morphology is nanoporous or nanotubular. The interpore dissolution rate can be tuned by changing the anodization parameters such as anodization time and water content in an electrolyte. Consequently, porous or tubular oxide nanostructures can be selectively fabricated on a zircaloy surface by controlling the parameters. Based on this mechanism, zirconium oxide layers with completely nanoporous, completely nanotubular, and intermediate morphologies between a nanoporous and a nanotubular structure were controllably fabricated.
منابع مشابه
Fabrication of Uniform Nanoporous Oxide Layers on Long Cylindrical Zircaloy Tubes by Anodization Using Multi-Counter Electrodes
We have presented a method to prepare a uniform anodic nanoporous oxide film on the surface of a cylindrical zircaloy (Zr) tube. The distribution of the electric field around the Zr tube determines the distribution of the thickness of the anodic nanoporous oxide film. The electric field generated when a cylindrical Zr tube is electrochemically anodized was simulated by using commercial code COM...
متن کاملEffect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina
A detailed study of the pore-widening rate of nanoporous anodic alumina layers as a function of the anodization voltage was carried out. The study focuses on samples produced under the same electrolyte and concentration but different anodization voltages within the self-ordering regime. By means of ellipsometry-based optical characterization, it is shown that in the pore-widening process, the p...
متن کاملFabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method
Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...
متن کاملFabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method
Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...
متن کاملA Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.
Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as ac...
متن کامل